
Is Harmony at the
Heart of Things?

Virtually all civilizations, from the Greek and the
ancient Mayan to our own, are united by a determined

quest for evidence of harmony in the cosmos.

by Anthony Aveni

On January 1, 1801, the first night of a new century, the renowned
Sicilian astronomer Giuseppe Piazzi turned his telescope
toward a point in the sky between Mars and Jupiter. The faint

object he found, exactly where his calculations had predicted, was the first
asteroid ever identified. He named it Ceres, after the Roman goddess and pro-
tector of his native island. A year later, a German astronomer sighted a sec-
ond asteroid, which he called Pallas. Its slow but perceptible drift against the
background field of distant stars was a dead giveaway that it, too, was a rela-
tively nearby celestial body orbiting the sun. By 1890 astronomers had iden-
tified more than 300 asteroids, ranging in size from the giant Ceres, some
500 miles in diameter, to much smaller chunks of rock. Today, with the Hubble
space telescope in place, we can track millions of them, all floating in a wide
belt between 200 million and 400 million miles from the sun—an unnerv-
ing vision at a time when most scientists have come to agree that it was the
impact of a single errant asteroid that did in the dinosaurs. What if, we ask
ourselves, another asteroid comes hurtling toward Earth? 

But the human experience with asteroids so far has much more to tell us about
harmony than about apocalypse. One of the more interesting things about aster-
oids is the unusual way nature has arrayed them in space, and one of the more
interesting things about human beings is revealed by our insistent search for an
explanation of this arrangement. It is a search strongly rooted in our ancient intu-
ited sense that all things in nature operate rhythmically. Taken to the extreme
(which is where I fully intend to carry it), this universal rhythm-seeking reveals
nothing less than humanity’s age-old attempt to penetrate the mind of God. But
let’s start with the asteroids.
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Several great “scholars of the skies,” including Galileo (with pointer) and Copernicus (third
from right), share in the search for harmony in the cosmos in a 19th-century print.





In the 1850s, when astronomers plotted all the asteroid orbits they’d thus
far discovered, they noticed a curious pattern: There were about a dozen gaps
in the asteroid belt, “forbidden zones” that the asteroids seemed to shun. Today,
we might liken these gaps to the blank bands separating the songs on an old
LP record. 

What could explain them? The answer didn’t come until 1866,
when Indiana University astronomer Daniel Kirkwood hap-
pened upon a curious coincidence. If there had been aster-

oids in the gaps, Kirkwood found, there would have been a direct relation-
ship between the time it took each of them to travel around the sun and the
time it takes the giant planet Jupiter to do the same. (Not coincidentally, Jupiter
is the nearest object large enough to exert a strong gravitational force on the
asteroids.) The relationships could be expressed as fractions. Moreover,
these fractions were always composed of small whole numbers: one-half, two-
thirds, three-fifths, etc. 

From there, it was but a few relatively simple steps to understand how Jupiter
would pull asteroids in the forbidden zones—which are now called
Kirkwood’s Gaps—out of their orbit. Imagine that you and I are runners on a
circular track and that we start out simultaneously on a half-mile run. Say I com-
plete it in three minutes while you, a faster runner, do it in two (or two-thirds
my time). In other words, in the time it takes you to make a full revolution, I
can manage only two-thirds of a circuit. If a TV camera in a Goodyear blimp
flying overhead follows you from some arbitrary 12 o’clock position on the track
all the way around back to that position again, it will show me going only as
far as the eight o’clock position. If we continue running at our established paces,
once more around the track puts you back to that same 12 o’clock position after
four minutes of running but finds me plodding only as far as the 4 o’clock point.
At the end of your third revolution, six minutes into the race, you will have gained
a full lap, overtaking me at precisely the 12 o’clock point, where I have just com-
pleted only my second lap.

Next let’s suppose that you are completing the circuit not in some sim-
ple fraction of my time but in one made up of larger numbers, such as
11/13. By playing with the hands of a clock, we can see that it will take many
more laps before we encounter each other on the same part of the track. (If
you’re theoretically minded, there is a simple mathematical formula in most
elementary astronomy texts you can use to figure this out. The answer turns
out to be once every six and one-half of the faster runner’s laps.) As a gen-
eral rule, the smaller the numbers that make up these fractional periods, the
more frequent the close encounters.

Now switch back from track stars to real stars, and Kirkwood’s Gaps seem
less of a mystery. The gaps exist because asteroids that once may have trav-
eled in these vacant zones would have lapped Jupiter more frequently in their
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orbit around the sun, thus
bringing them under the giant
planet’s strong gravitational
influence more often. Even-
tually, gravity prevailed, jerk-
ing them out of orbit. (The
same logic explains the gaps
between the rings of Saturn,
with the killer gravitational
force supplied by the nearby
moon Mimas.) In astronomi-
cal parlance, Kirkwood’s Gaps
are caused by commensura-
tions between the periods of
asteroids and the period of
Jupiter.

An interesting word, com-
mensurate. Literally, it means
having a common measure, or
divisible by a common unit a
whole number of times. This
combination of parts into a
consistent arrangement to
form a whole creates what we call harmony. Order of this kind pleases the
senses, as in the balanced combination of hues that brings joy or satisfaction
to the eye by producing harmonious colors. We describe colors that seem to
blend in an orderly way as “going together” or “resonating” with one anoth-
er. In mechanical or electrical systems, resonant vibrations are set up when
a periodic stimulus beats in time with the natural frequency of the system.
The simplest example I can think of occurs when you push a child on a swing
in time with the natural frequency of the swing.

From earliest times, humans have sought harmony and rhythm even
where they are not readily perceptible, in fields as varied as astron-
omy, music, and calendar making. The search for the commensurate,

the real subject of this essay, is as old as the oldest religion and far older than
the oldest science. It emanates from a time long past, when numbers were
thought to have lives of their own.

All musicians are aware of the harmonic tones that issue from commensu-
rate lengths of strings we pluck or tubes we blow through. The harmonic prin-
ciple in music was discovered in the 6th century b.c. by the Greek philosopher
Pythagoras. We don’t know where he got the idea that number and harmony
are linked. One story (probably apocryphal) has it that he heard the sonorous
ringing of a blacksmith’s hammers of differing weights. But we can be fairly sure
that, drawn by curiosity, he eventually took a length of string and marked out
on it the proportions 12:8:6. Cutting it into 12:6 and plucking the respective
lengths, he heard an octave. The division 12:8 produced a fifth, while the 8:6
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“All is number,” according to a dictum attrib-
uted to Pythagoras (circa 580–500 b.c.).



resonated in a fourth. These all are consonant chords. (But divide that string
13:11 or 19:12 and you will get a decidedly dissonant chord!) Thus did
Pythagoras make the momentous discovery that acoustical consonances are cre-
ated by commensurate lengths composed of low numbers.*

If all musical sound can be reduced to numbers, Pythagoras wondered,
why not other things? The anthropomorphic origin of the number 10 is clear
enough—we have 10 fingers and 10 toes. And like the two kinds of numbers,
odd and even (or positive and negative), there are two sexes, as well as good
and evil. Take the balanced nature of the number four (two times two).
Couldn’t that represent justice? And why shouldn’t six be the number of mar-
riage? (It is the product of 3 and 2, the lowest “male” and “female” numbers.) 

Pythagorean inquirers endowed numbers with both a psychological and
an ethical dimension. The notion that numbers are the essence of form derives
from the Greek love affair with geometry. Though we often think of it as an
abstract realm of thought—remember the endless chain of proofs in high
school geometry class?—the word geometry literally means “land measure.”
It started out as a practical skill associated with building and farming.
Indeed, the celebrated Pythagorean theorem on right triangles is really a for-
mula for finding harmony by equating different areas. 

That the square on the hypotenuse equals the squares on the other two sides
of the triangle means that if you make a square, one side of which is the
hypotenuse, and two other squares on the remaining two sides of the trian-
gle, the area of the first square is the sum of the area of the other
two squares (C2=A2+B2), as in the diagram:

The idea that number yields form probably came
from the early representation of numbers as dots
arranged in patterns. Tallying a large number of
items is made simple by visual arrangements. (I
remember as a child how quickly I could count
up all the pennies in my piggy bank by spreading them
out on a large surface, then eyeballing them in patterns
of five and sweeping each group with the side of my hand
back into the container.) Thus, the numbers 6, 10, 15,
21, 28, etc., are “triangular” because they can be laid
out in equilateral triangles. In a bowling alley, for example, the 10 pins are
arranged in a 4-3-2-1 pattern. Early numerologists regarded 4, 9, 16, 25, 36,
etc., as square, while 6, 12, 20, 30, etc., were thought to be rectangular.

Numbers live! They show their faces in patterns of time as well as space.
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*Are such consonant chords artifacts of culture or is the human ear tuned biologically? On this side issue in the
age-old nature-nurture debate, the jury is still out. However, some psychologists argue that the tones produced in
the simple frequency ratios in a piece by Beethoven or Mozart are naturally more pleasing to the senses than the
more complex tones in a modern composition by a Berg or Webern. To prove their point, a group of university
scientists recently subjected infants, some as young as four months, to the music of classical and atonal composers.
The kids seemed more contented when the harmonious chords of Beethoven’s Ninth were played, but they fret-
ted, frowned, and screeched their own dissonant cries as soon as they heard the combined C sharp and F sharp
of Schönberg.
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Whether we are dealing with musical harmony or the gravity-produced res-
onance between missing asteroids and the planet Jupiter, the secret lies in
finding the numbers that mesh concordantly, that join together to convince
the eye, the ear, or the soul that a degree of order resides in the experience
at hand.

Number meets time on the turf of astronomy. One of the basic functions
of ancient skywatching the world over lay in the development of calendars.
People devised them for various reasons, ranging from the loose demands of
agriculture to the more rigid dictates of a state religion. We create calendars
to control time. Our desire is
to predict the arrival of
future events as accurately
as possible, literally to reach
dates in the future. But to
know how nature will
behave in the future, we
must draw upon the lessons
of the past. For clues we can
observe the changing posi-
tion of the Sun at the hori-
zon, the reappearance of
the thin crescent Moon, the first morning rise of a bright star or planet, the
shortest length of a shadow cast by a stick, or the occurrence of the first rain
after a lengthy dry period. But while every calendar begins with a sequence
of observed natural events, it is only when these phenomena are related through
a numerical correlation that one has a calendar. That’s where temporal
commensuration begins.

An early example of this sort of future-date-reaching can be found
in the various attempts (I would call them struggles) by the cul-
tures of the world to commensurate the movements of the two

primary celestial bodies: the seasonal year of the Sun and the lunar month
of the phases. The rising or setting Sun moves through a complete cycle of
positions at the horizon in the course of 365.2422 days, while the Moon com-
pletes its synodic cycle, from first visible crescent through full and new
phase and back again to first crescent, in 29.5306 days. Ancient astronomers
reckoned these periods with great precision by repeated observations made
over very long intervals. 

That these basic time cycles do not naturally mesh is a fact of life. History
teaches us that the goal of calendar makers was to invent a harmonic scheme
by finding a way to make the cycles fit. How might this work in practice? The
solar year is divisible by the synodic month 12 times, with a remainder of
10.8750 days. Suppose we were to begin each month with the occurrence
of a first crescent Moon. For simplicity’s sake, suppose further that the first
of these crescents occurs exactly at the June solstice, when the Sun attains
its greatest northerly extreme on the horizon. Recognizing this, calendar keep-
ers would note that the 13th crescent in the lunar cycle would occur some
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11 days before the next June solstice, or 354 days later. In other words, in the
first solar year, 12 lunar synodic months will have been completed, with a
little bit left over. In the second solar year, the 24th crescent in the lunar series
would occur about 22 days before the end of the year. By the third solar count,
the first crescent would be recorded about 33 days before year’s end. 

To make things fit better, a calendrical rhythm maker might ask: Why not
add a 13th month to the third year to take up the temporal slack? That would
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Elaborate but functional, a 15th-century calendar reminded users that June is the haymaking month.



result in only three days left over. Following this scheme, the fourth and fifth
solar years would consist again of 12 months, but the sixth year would con-
tain 13 months, the last one ending about six days short of the solstice.

This method of inserting extra days or months into the calendar is called
intercalation. Following the cardinal rule of calendar making—if harmony
isn’t there, find a way to create it—timekeepers would try to devise a method
of intercalation that would guarantee that the lunar and solar years would never
get out of step by more than a month. It is easy to see that the simple 12-12-
13-12-12-13 method can be further improved by inserting an extra 13-beat
measure into the rhythm once the shortfall between first crescent and sol-
stice builds up to a full month. Ancient cultures were thus able to develop
some rather impressive intercalation schemes. The leap year schedule in our
own calendar is an excellent example of intercalation. It derives from
attempts to fit a time period consisting of a whole number of days into a sea-
sonal year made up of a nonwhole number of days.

Such concerns are far distant from the way we think about numbers
and time in our daily lives. Ours is a world denuded of the absolute
significance of number, thanks in large part to the 17th-century

scientific revolution. In one of his dialogues, Galileo (1564–1642)
denounced the ancient Greek notion that number, by itself alone, can deter-
mine how matter will behave. He put this Pythagorean belief in the mouth
of the aptly named Simplicio, who says he believes that the number three is
perfect because all complete and whole things in the world have three
dimensions as well as three parts (e.g., a beginning, a middle, and an end).
Galileo replies through the voice of Salviati—his name is significant too, if
you think about it—who scoffs at the notion that a mere number “has a fac-
ulty of conferring perfection upon its possessors.”

Needless to say, Galileo prevailed. All that remains of the archaic
Pythagorean way of thinking about numbers is a lucky 7, an unlucky 13, and
“three on a match.” The number 10, thoroughly stripped of its divine prop-
erties, survives as the base of most of our mathematical systems.

Still, the concept of harmonic numbers found its place in the minds
of some early scientists. “There is geometry in the humming of the
strings. There is music in the spacing of the spheres.” Johannes Kepler,
the 17th-century German astronomer, was very much influenced by
these words of Pythagoras. He took them to mean that God’s secret was
encoded in a series of planetary musical tones. Kepler (1571–1630) was
convinced that the spheres containing the orbits of the planets are sep-
arated by intervals that correspond to the relative length of strings that pro-
duce consonant tones, what he called the “harmonices mundi” or the “har-
mony of the spheres.” 

Kepler dedicated a large portion of his life to studying the positions and
motions of the planets, with the goal of determining the sizes and shapes of
their orbits. (It was Kepler who discovered that the orbits were elliptical.) Was
there a single mathematical or geometrical law, he wondered, that gov-
erned a planet’s distance from the Sun?
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One day, while inscribing a circle inside an equilateral triangle before his
class at the University of Graz, in Austria, Kepler is said to have been struck
by the idea that the placement of one geometrical figure within another might
hold a key to the answer. Kepler knew that there were only five regular
polyhedrons (solid figures whose faces are composed of identical polygons):
tetrahedrons, cubes, octahedrons, dodecahedrons, and icosahedrons. He
was also aware of a famous geometrical proof that demonstrates an essential
quality of regular polyhedrons: A sphere can be inscribed within each reg-
ular polyhedron such that it touches the center of each face of the polyhe-
dron. Also, spheres can be circumscribed about each of these figures such
that the corners of each polyhedron touch the spheres. 

Kepler’s “eureka moment” came when he realized that there were
six planets orbiting the sun (Uranus, Neptune, and Pluto were
unknown in the pre-telescopic era) and, consequently, five spaces

between them. In his Astronomia Nova (1609), he exclaims: “I have brought
to life and found true far beyond my hope and expectations that the whole
nature of harmonies in the celestial movements really exists—not in the way
I thought previously, but in a completely different, yet absolutely perfect man-
ner.” Had God deliberately designed the architecture of the universe so
that the five regular polyhedrons, each
in its correct place, would fit exactly
between the planets’ orbits around the
sun? At the very moment of revelation,
according to one version of the story,
Kepler dropped his chalk, fled the class-
room, and sequestered himself for an
intense, lengthy encounter with the
axioms of the God-given geometry and
numerology of the cosmos. Convinced
he was on the right track, Kepler even
spent a large portion of his salary to con-
struct a model of the spheres and poly-
hedrons that fit perfectly one inside the other.

As Kepler later would be forced to admit, his theory about the cosmic sig-
nificance of the regular polyhedrons was wrong. Never a quitter, the great
astronomer tried equating planetary speed with musical pitch. Perhaps the faster
planets trilled out high notes while the slower ones growled choral responses in
the bass register of the firmament. Together the planets would resonate in a heav-
enly symphony composed by the Creator. When he attempted to write out
God’s musical score, Kepler happened upon his harmonic law, the one that cor-
relates a planet’s period of revolution with its distance from the Sun. It turned
out to be one of the keys to Isaac Newton’s discovery of the law of universal grav-
itation in 1687.

Contemporary historians of science call Newton a genius, while Kepler is often
denigrated for having followed the lead of a nonsensical revelation about com-
mensurate geometry. But in the Europe of Kepler’s era, it would not have been
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Kepler’s model of the solar system



unreasonable to think of God as a universal craftsman, the divine musical com-
poser who set the planets in motion, each with its own pitch that contributed to
the Harmony of the Worlds. And Kepler’s quest for the commensurate still res-
onates. In 1930, on the 300th anniversary of his death, as scientists were explor-
ing the spacing of electrons about atomic nuclei, the physicist Arnold
Sommerfeld asked, 

Would Kepler, the Mystic who, like Pythagoras and Plato, tried to find and to enjoy
the harmonies of the Cosmos, would he have been surprised that atomic physics
had re-discovered the very same harmonies in the building-stones of matter, and
this in even purer form? For the integral numbers in the original quantum-the-
ory display a greater harmonic consonance than even the stars in the Pythagorean
music of the spheres.

The search for things commensurate—for balance, equilibrium,
and harmony that please the senses—hasn’t been only a Western
pursuit. It lies at the foundation of mathematical systems in cul-

tures all over the world. A case in point is the divine coalescence of numbers
derived by the ancient Maya, a culture just about as far removed from our
Greek ancestors as we can imagine.

Numeration had great potency in ancient Mayan thought. During the first
millennium a.d., Mayan artisans chiseled numbers in stone and painted them
in manuscripts, on pots, and on wall-sized murals all over Central America.
Among the relics of Mayan civilization are tall, rectangular stones called ste-
lae, engraved with highly stylized numbers. Epigraphers think people once
stood in front of these monuments chanting the names of their number gods,
hoping to influence divine intervention in their lives. Each number was con-
ceived as a god with particular characteristics related to age, sex, sexual
prowess, and other aspects of human existence. Thick lipped, his face spot-
ted with tattoos, the god who depicted the number two symbolized death and
sacrifice; the wrinkled countenance of number five reminds us of the wis-
dom of old age. In Mayan society these sacred numbers apparently made the
passage of time possible, for the number gods are often shown carrying the
burden of the days, parceled out into units (like our days, months, and
years), upon their backs. 

To comprehend the Mayan numerological mentality, we must listen to
the sky. Like the ancient Greeks, we pick up the beat of the two loudest
instruments in the firmament, the Sun and the Moon, and then, if we are
Maya, listen for the next most audible. It comes from the planet Venus,
the third brightest object in the sky. The search for harmony compels us
to seek another beat, to create a musical score to which all three luminaries
can dance.

What made Venus so special for the Maya was the fact that its cycle
of 584 days happens to resonate with the cycle of the seasons, or 365 days,
in the perfect ratio of two small whole numbers: eight to five. In practi-
cal terms, this means that to the careful eye any visible aspect of Venus
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timed relative to the position of the sun will be repeated almost exactly
eight years later. For example, if Venus first appears as a morning star on
the first day of winter 2001, it will repeat that performance very close to
that date in 2009 and again in 2017. How satisfying it must have been for
the Mayan keeper of the days to find such pristine order in an otherwise
chaotic world!

A seasonal index like this one could be useful to any practical-minded peo-
ple who kept time
by a solar-based cal-
endar, especially if
they had latched on
to expressing peri-
ods in whole-num-
ber ratios. For a
time, the Maya
became obsessed
with this Venus
cycle, recognizing
that it also con-
formed with the
moon’s phases. The
Venus eight-year
cycle also equals a

whole number of lunar synodic months (99 of them to be exact). So, the
phase of the moon that accompanies the first appearance of Venus—say, at the
December solstice in 2001—will be repeated around the time of the
December solstice eight years later, thus signaling the return of Venus. 

The euphonious coming together of natural cyclic periods may seem unim-
portant to us. It scarcely matters, for example, what day of the week coincides
with New Year’s Day from year to year. But for societies whose systems of time-
keeping were based on repetitive natural phenomena, some of them projected
all the way back to the mythic creation of the world, the revelation of com-
mensurate quantities underpinning the wanderings of their celestial deities
would have been regarded as a major discovery revealing the secrets of the
universe.

Mayan philosophers of time were not content only to compose
a celestial symphony. They sought rhythm-making numbers
linked to other periodicities involving the pulse of their

lives, cosmic beats that penetrated their very bodies. For example, they
recognized that the length of time Venus spends as a morning or an
evening star was approximately equal to the sacred count of 260 days. That
number appeared very early (ca. 600 b.c.) in the development of the Mayan
calendar, when Mayan timekeepers recognized the near equivalence of
the time of human gestation in days and the product of the number of
layers in heaven (13) and the number of fingers and toes on the human
body (20)—yet another kind of commensuration. 
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The Mayan number god zero carries the burden of days. The
figure appears on a stone stela found in Honduras.



Captivated by the rhythms of life and nature, Mayan seekers of the com-
mensurate apparently would go to any lengths to acquire the magical beat.
Let me close by citing a recent discovery in ancient Mayan epigraphy that I
believe is as important to the study of the Maya as the discovery of
Kirkwood’s Gaps was to the rise of 19th-century astronomy. In a sense, the
two discoveries resonate with each other.

In the Mayan world, common birth dates implied common attributes,
for the date of one’s birth was said to ordain one’s destiny. To pro-
vide a numerological charter attesting to the legitimacy of their

rulers, the ancient Maya went to a great deal of trouble to demonstrate
that leaders were born on days with the same name as the gods who cre-
ated the world. So we ought not be surprised to find in the Mayan
inscriptions certain large numbers that are exactly divisible by a wide range
of natural time cycles. There is on page 24 of the Venus Table in the
Dresden Codex (a Mayan hieroglyphic book of divination dated to short-
ly before the Spanish conquest), a very seminal large number that occu-
pies the starting point in a time-reckoning scheme that accurately tracks
the position of the planet Venus in the sky. The magic number is written
as an interval said to have elapsed since events that took place in heav-
en before the creation of the world as we now know it. This number trans-
lates from the Mayan base-20 system of counting into 1,366,560 of our
days (about 3,741 years). My colleague, the late Yale University linguist
Floyd Lounsbury, dubbed it the “super number” of the Mayan codices.
I think he had good reason for doing so, because he had discovered, to
his amazement, that it is an exact whole multiple of several other num-
bers of vital interest to the Maya: the period of Venus (584 days), the length
of the entire Venus Table (37,960 days), the period of Mars (780 days),
the seasonal year (365 days), and the period of Mercury (117 days). And,
as might be expected, it is also commensurate with the most sacred of all
Mayan cycles, the 260-day count. 

I cannot even begin to hazard a guess about how the Maya might have
happened upon this “mother of all numbers.” It must have taken gener-
ations of careful skywatching and years of mathematical calculation to root
out the commensurate cosmic number par excellence, the “gravitational
constant” in the Mayan universe of numbers. Like the lost chord, such a
grand cycle resonating perfect harmony defies all credibility even as it
inspires awe. 

I have a feeling that all cultures at one time or another taste the passion
for perfection derived from questing after the commensurate. I wonder what
the Mayan Kepler, enraptured by that eureka moment of discovery, must have
thought when the divine cosmic beat suddenly popped out at him. Ptolemy
of Alexandria, greatest of all the Greek astronomers, captured the feeling per-
fectly when, after his own harmonic revelation more than two millennia ago,
he wrote that “in studying the convoluted orbits of the stars my feet do not
touch the earth, and, seated at the table of Zeus himself, I am nurtured with
celestial ambrosia.” ❏
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